|
In mathematics, the Brunn–Minkowski theorem (or Brunn–Minkowski inequality) is an inequality relating the volumes (or more generally Lebesgue measures) of compact subsets of Euclidean space. The original version of the Brunn–Minkowski theorem (Hermann Brunn 1887; Hermann Minkowski 1896) applied to convex sets; the generalization to compact nonconvex sets stated here is due to L. A. Lyusternik (1935). ==Statement of the theorem== Let ''n'' ≥ 1 and let ''μ'' denote the Lebesgue measure on R''n''. Let ''A'' and ''B'' be two nonempty compact subsets of R''n''. Then the following inequality holds: : where ''A'' + ''B'' denotes the Minkowski sum: : 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Brunn–Minkowski theorem」の詳細全文を読む スポンサード リンク
|